Interface BitvectorFormulaManager
-
- All Known Implementing Classes:
AbstractBitvectorFormulaManager
,DebuggingBitvectorFormulaManager
public interface BitvectorFormulaManager
Manager for dealing with formulas of the bitvector sort.
-
-
Method Summary
All Methods Instance Methods Abstract Methods Default Methods Deprecated Methods Modifier and Type Method Description BitvectorFormula
add(BitvectorFormula number1, BitvectorFormula number2)
This method returns the addition of the given bitvectors.BitvectorFormula
and(BitvectorFormula bits1, BitvectorFormula bits2)
This method returns the bit-wise AND of the given bitvectors.BitvectorFormula
concat(BitvectorFormula prefix, BitvectorFormula suffix)
Concatenate two bitvectors.BooleanFormula
distinct(List<BitvectorFormula> pBits)
All given bitvectors are pairwise unequal.BitvectorFormula
divide(BitvectorFormula dividend, BitvectorFormula divisor, boolean signed)
This method returns the division for two bitvector formulas.BooleanFormula
equal(BitvectorFormula number1, BitvectorFormula number2)
This method returns the bit-wise equality of the given bitvectors.BitvectorFormula
extend(BitvectorFormula number, int extensionBits, boolean signed)
Extend a bitvector to the left (add most significant bits).BitvectorFormula
extract(BitvectorFormula number, int msb, int lsb)
Extract a range of bits from a bitvector.int
getLength(BitvectorFormula number)
This method returns the length of a bitvector, also denoted as bit-size.BooleanFormula
greaterOrEquals(BitvectorFormula number1, BitvectorFormula number2, boolean signed)
Compare the given bitvectors.BooleanFormula
greaterThan(BitvectorFormula number1, BitvectorFormula number2, boolean signed)
Compare the given bitvectors.BooleanFormula
lessOrEquals(BitvectorFormula number1, BitvectorFormula number2, boolean signed)
Compare the given bitvectors.BooleanFormula
lessThan(BitvectorFormula number1, BitvectorFormula number2, boolean signed)
Compare the given bitvectors.BitvectorFormula
makeBitvector(int length, long pI)
Convert a number into a bitvector with given size.BitvectorFormula
makeBitvector(int length, BigInteger pI)
Convert a number into a bitvector with given size.BitvectorFormula
makeBitvector(int length, NumeralFormula.IntegerFormula pI)
Convert/Cast/Interpret a numeral formula into a bitvector with given size.BitvectorFormula
makeVariable(int length, String pVar)
Creates a variable with exactly the given name and bitwidth.BitvectorFormula
makeVariable(FormulaType.BitvectorType type, String pVar)
default BitvectorFormula
modulo(BitvectorFormula dividend, BitvectorFormula divisor, boolean signed)
Deprecated, for removal: This API element is subject to removal in a future version.BitvectorFormula
multiply(BitvectorFormula number1, BitvectorFormula number2)
This method returns the multiplication of the given bitvectors.BitvectorFormula
negate(BitvectorFormula number)
This method returns the negated number, i.e., it is multiplied by "-1".BitvectorFormula
not(BitvectorFormula bits)
This method returns the bit-wise complement of the given bitvector.BitvectorFormula
or(BitvectorFormula bits1, BitvectorFormula bits2)
This method returns the bit-wise OR of the given bitvectors.BitvectorFormula
remainder(BitvectorFormula dividend, BitvectorFormula divisor, boolean signed)
This method returns the remainder for two bitvector formulas using thedivide(BitvectorFormula, BitvectorFormula, boolean)
operation.BitvectorFormula
rotateLeft(BitvectorFormula number, int toRotate)
This method returns a term representing the left rotation (towards most-significant bit) of number by toRotate.BitvectorFormula
rotateLeft(BitvectorFormula number, BitvectorFormula toRotate)
This method returns a term representing the left rotation (towards most-significant bit) of number by toRotate.BitvectorFormula
rotateRight(BitvectorFormula number, int toRotate)
This method returns a term representing the right rotation (towards least-significant bit) of number by toRotate.BitvectorFormula
rotateRight(BitvectorFormula number, BitvectorFormula toRotate)
This method returns a term representing the right rotation (towards least-significant bit) of number by toRotate.BitvectorFormula
shiftLeft(BitvectorFormula number, BitvectorFormula toShift)
This method returns a term representing the left shift (towards most-significant bit) of number by toShift.BitvectorFormula
shiftRight(BitvectorFormula number, BitvectorFormula toShift, boolean signed)
This method returns a term representing the right shift (towards least-significant bit) of number by toShift.BitvectorFormula
smodulo(BitvectorFormula dividend, BitvectorFormula divisor)
This method returns the two complement signed remainder for the Euclidean division (modulo) of two bitvector formulas.BitvectorFormula
subtract(BitvectorFormula number1, BitvectorFormula number2)
This method returns the subtraction of the given bitvectors.NumeralFormula.IntegerFormula
toIntegerFormula(BitvectorFormula pI, boolean signed)
Convert/Cast/Interpret a signed/unsigned bitvector formula as an integer formula.BitvectorFormula
xor(BitvectorFormula bits1, BitvectorFormula bits2)
This method returns the bit-wise XOR of the given bitvectors.
-
-
-
Method Detail
-
makeBitvector
BitvectorFormula makeBitvector(int length, long pI)
Convert a number into a bitvector with given size.- Throws:
IllegalArgumentException
- if the number is out of range for the given length.
-
makeBitvector
BitvectorFormula makeBitvector(int length, BigInteger pI)
Convert a number into a bitvector with given size.- Throws:
IllegalArgumentException
- if the number is out of range for the given length.
-
makeBitvector
BitvectorFormula makeBitvector(int length, NumeralFormula.IntegerFormula pI)
Convert/Cast/Interpret a numeral formula into a bitvector with given size.If the numeral formula is too large for the given length, we cut off the largest bits and only use the lest significant bits.
-
toIntegerFormula
NumeralFormula.IntegerFormula toIntegerFormula(BitvectorFormula pI, boolean signed)
Convert/Cast/Interpret a signed/unsigned bitvector formula as an integer formula.
-
makeVariable
BitvectorFormula makeVariable(int length, String pVar)
Creates a variable with exactly the given name and bitwidth.Please make sure that the given name is valid in SMT-LIB2. Take a look at
FormulaManager.isValidName(java.lang.String)
for further information.This method does not quote or unquote the given name, but uses the plain name "AS IS".
Formula.toString()
can return a different String than the given one.
-
makeVariable
BitvectorFormula makeVariable(FormulaType.BitvectorType type, String pVar)
- See Also:
makeVariable(int, String)
-
getLength
int getLength(BitvectorFormula number)
This method returns the length of a bitvector, also denoted as bit-size.
-
negate
BitvectorFormula negate(BitvectorFormula number)
This method returns the negated number, i.e., it is multiplied by "-1". The given number is interpreted as signed bitvector and corresponds to "2^BITSIZE - number". The result has the same length as the given number.
-
add
BitvectorFormula add(BitvectorFormula number1, BitvectorFormula number2)
This method returns the addition of the given bitvectors. The result has the same length as the given parameters. There can be an overflow, i.e., as one would expect from bitvector logic. There is no difference in signed and unsigned numbers.- Parameters:
number1
- a Formulanumber2
- a Formula- Returns:
number1 + number2
-
subtract
BitvectorFormula subtract(BitvectorFormula number1, BitvectorFormula number2)
This method returns the subtraction of the given bitvectors. The result has the same length as the given parameters. There can be an overflow, i.e., as one would expect from bitvector logic. There is no difference in signed and unsigned numbers.- Parameters:
number1
- a Formulanumber2
- a Formula- Returns:
number1 - number2
-
divide
BitvectorFormula divide(BitvectorFormula dividend, BitvectorFormula divisor, boolean signed)
This method returns the division for two bitvector formulas.For signed bitvectors, the result is rounded towards zero (also called "truncated integer division", similar to the division in the C99 standard), e.g., a user can assume the following equations:
- 10 / 5 = 2
- 10 / 3 = 3
- 10 / (-3) = -3
- -10 / 5 = -2
- -10 / 3 = -3
- -10 / (-3) = 3
If the divisor evaluates to zero (division-by-zero), either directly as value or indirectly via an additional constraint, then the result of the division is defined as:
- "-1" interpreted as bitvector (i.e., all bits set to "1"), if the dividend is non-negative, and
- "1" interpreted as bitvector (i.e., all bits set to "0", except the last bit), if the dividend is negative.
We refer to the SMTLIB standard version 2.6 for the division and remainder operators in BV theory.
- Parameters:
dividend
- dividend of the operation.divisor
- divisor of the operation.signed
- whether to interpret all operands as signed or as unsigned numbers.
-
modulo
@Deprecated(forRemoval=true) default BitvectorFormula modulo(BitvectorFormula dividend, BitvectorFormula divisor, boolean signed)
Deprecated, for removal: This API element is subject to removal in a future version.Deprecated and unsupported operation.Returns the remainder of the given bitvectors and behaves equally to
remainder(BitvectorFormula, BitvectorFormula, boolean)
.Deprecated in favor of remainder() and smodulo() due to confusing method naming and inconsistent behavior (for signed modulo, the sign of the result follows the divisor, but for signed remainder() it follows the dividend). Unsigned remainder() is equivalent to unsigned modulo().
-
smodulo
BitvectorFormula smodulo(BitvectorFormula dividend, BitvectorFormula divisor)
This method returns the two complement signed remainder for the Euclidean division (modulo) of two bitvector formulas.The sign of the result follows the sign of the divisor, i.e. the quotient calculated in the modulo operation is rounded in such a way that the result of the smodulo operation follows the sign of the divisor, e.g., a user can assume the following equations, with bitvectors interpreted as signed decimal numbers and % representing signed modulo, to hold:
- 10 % 5 == 0
- 10 % 3 == 1
- 10 % (-3) == -2
- -10 % 5 == 0
- -10 % 3 == 2
- -10 % (-3) == -1
If the divisor evaluates to zero (modulo-by-zero), either directly as value or indirectly via an additional constraint, then the result of the modulo operation is defined as the dividend itself. We refer to the SMTLIB standard version 2.6 for the division and remainder operators in BV theory.
For unsigned modulo, we refer to the unsigned remainder method.
- Parameters:
dividend
- dividend of the operation.divisor
- divisor of the operation.
-
remainder
BitvectorFormula remainder(BitvectorFormula dividend, BitvectorFormula divisor, boolean signed)
This method returns the remainder for two bitvector formulas using thedivide(BitvectorFormula, BitvectorFormula, boolean)
operation.For unsigned bitvectors, this returns the remainder of unsigned bitvector division.
For signed bitvectors, the sign of the result follows the sign of the dividend, i.e. the quotient of the division is rounded in such a way that the sign of the result of the remainder operation follows the sign of the dividend, e.g., a user can assume the following equations, with bitvectors interpreted as signed decimal numbers and % representing signed remainder (similar to the C programming language), to hold:
- 10 % 5 == 0
- 10 % 3 == 1
- 10 % (-3) == 1
- -10 % 5 == 0
- -10 % 3 == -1
- -10 % (-3) == -1
If the divisor evaluates to zero (modulo-by-zero), either directly as value or indirectly via an additional constraint, then the result of the modulo operation is defined as the dividend itself. We refer to the SMTLIB standard version 2.6 for the division and remainder operators in BV theory.
- Parameters:
dividend
- dividend of the operation. The sign bit is carried over from this bitvector for signed operations.divisor
- divisor of the operation.signed
- whether to interpret all operands as signed or as unsigned numbers.
-
multiply
BitvectorFormula multiply(BitvectorFormula number1, BitvectorFormula number2)
This method returns the multiplication of the given bitvectors. The result has the same length as the given parameters. There can be an overflow, i.e., as one would expect from bitvector logic. There is no difference in signed and unsigned numbers.- Parameters:
number1
- a Formulanumber2
- a Formula- Returns:
number1 - number2
-
equal
BooleanFormula equal(BitvectorFormula number1, BitvectorFormula number2)
This method returns the bit-wise equality of the given bitvectors.- Parameters:
number1
- a Formulanumber2
- a Formula- Returns:
number1 == number2
-
greaterThan
BooleanFormula greaterThan(BitvectorFormula number1, BitvectorFormula number2, boolean signed)
Compare the given bitvectors.- Parameters:
number1
- a Formulanumber2
- a Formulasigned
- interpret the bitvectors as signed numbers instead of unsigned numbers- Returns:
number1 > number2
-
greaterOrEquals
BooleanFormula greaterOrEquals(BitvectorFormula number1, BitvectorFormula number2, boolean signed)
Compare the given bitvectors.- Parameters:
number1
- a Formulanumber2
- a Formulasigned
- interpret the bitvectors as signed numbers instead of unsigned numbers- Returns:
number1 >= number2
-
lessThan
BooleanFormula lessThan(BitvectorFormula number1, BitvectorFormula number2, boolean signed)
Compare the given bitvectors.- Parameters:
number1
- a Formulanumber2
- a Formulasigned
- interpret the bitvectors as signed numbers instead of unsigned numbers- Returns:
number1 < number2
-
lessOrEquals
BooleanFormula lessOrEquals(BitvectorFormula number1, BitvectorFormula number2, boolean signed)
Compare the given bitvectors.- Parameters:
number1
- a Formulanumber2
- a Formulasigned
- interpret the bitvectors as signed numbers instead of unsigned numbers- Returns:
number1 <= number2
-
not
BitvectorFormula not(BitvectorFormula bits)
This method returns the bit-wise complement of the given bitvector.- Parameters:
bits
- Formula- Returns:
~bits
-
and
BitvectorFormula and(BitvectorFormula bits1, BitvectorFormula bits2)
This method returns the bit-wise AND of the given bitvectors.- Parameters:
bits1
- a Formulabits2
- a Formula- Returns:
bits1 & bits2
-
or
BitvectorFormula or(BitvectorFormula bits1, BitvectorFormula bits2)
This method returns the bit-wise OR of the given bitvectors.- Parameters:
bits1
- a Formulabits2
- a Formula- Returns:
bits1 | bits2
-
xor
BitvectorFormula xor(BitvectorFormula bits1, BitvectorFormula bits2)
This method returns the bit-wise XOR of the given bitvectors.- Parameters:
bits1
- a Formulabits2
- a Formula- Returns:
bits1 ^ bits2
-
shiftRight
BitvectorFormula shiftRight(BitvectorFormula number, BitvectorFormula toShift, boolean signed)
This method returns a term representing the right shift (towards least-significant bit) of number by toShift. The result has the same length as the given number. On the left side, we fill up the most significant bits with ones (i.e., arithmetic shift), if the number is signed and negative, else we fill up with zeroes. For "toShift >= bitsize", we return a bitvector with value zero, if number was zero or positive, or all bits set to one, if negative.
-
shiftLeft
BitvectorFormula shiftLeft(BitvectorFormula number, BitvectorFormula toShift)
This method returns a term representing the left shift (towards most-significant bit) of number by toShift. The result has the same length as the given number. On the right side, we fill up the least significant bits with zeroes. For "toShift >= bitsize", we return a bitvector with value zero.
-
rotateLeft
BitvectorFormula rotateLeft(BitvectorFormula number, int toRotate)
This method returns a term representing the left rotation (towards most-significant bit) of number by toRotate. The result has the same length as the given number. For "toRotate % bitsize == 0", we return the number itself.- Parameters:
toRotate
- the number of bits to be moved
-
rotateLeft
BitvectorFormula rotateLeft(BitvectorFormula number, BitvectorFormula toRotate)
This method returns a term representing the left rotation (towards most-significant bit) of number by toRotate. The result has the same length as the given number. For "toRotate % bitsize == 0", we return the number itself.- Parameters:
toRotate
- unsigned bitvector, represents the number of bits to be moved
-
rotateRight
BitvectorFormula rotateRight(BitvectorFormula number, int toRotate)
This method returns a term representing the right rotation (towards least-significant bit) of number by toRotate. The result has the same length as the given number. For "toRotate % bitsize == 0", we return the number itself.- Parameters:
toRotate
- the number of bits to be moved
-
rotateRight
BitvectorFormula rotateRight(BitvectorFormula number, BitvectorFormula toRotate)
This method returns a term representing the right rotation (towards least-significant bit) of number by toRotate. The result has the same length as the given number. For "toRotate % bitsize == 0", we return the number itself.- Parameters:
toRotate
- unsigned bitvector, represents the number of bits to be moved
-
concat
BitvectorFormula concat(BitvectorFormula prefix, BitvectorFormula suffix)
Concatenate two bitvectors.
-
extract
BitvectorFormula extract(BitvectorFormula number, int msb, int lsb)
Extract a range of bits from a bitvector. We require0 <= lsb <= msb < bitsize
.If msb equals lsb, then a single bit will be returned, i.e., the bit from the given position. If lsb equals 0 and msb equals bitsize-1, then the complete bitvector will be returned.
- Parameters:
number
- from where the bits are extracted.msb
- Upper index for the most significant bit. Must be in interval from lsb to bitsize-1.lsb
- Lower index for the least significant bit. Must be in interval from 0 to msb.
-
extend
BitvectorFormula extend(BitvectorFormula number, int extensionBits, boolean signed)
Extend a bitvector to the left (add most significant bits). If signed is set and the given number is negative, then the bit "1" will be added several times, else "0".- Parameters:
number
- The bitvector to extend.extensionBits
- How many bits to add.signed
- Whether the extension should depend on the sign bit.
-
distinct
BooleanFormula distinct(List<BitvectorFormula> pBits)
All given bitvectors are pairwise unequal.
-
-