Class AbstractBitvectorFormulaManager<TFormulaInfo,TType,TEnv,TFuncDecl>
- java.lang.Object
-
- org.sosy_lab.java_smt.basicimpl.AbstractBitvectorFormulaManager<TFormulaInfo,TType,TEnv,TFuncDecl>
-
- All Implemented Interfaces:
BitvectorFormulaManager
public abstract class AbstractBitvectorFormulaManager<TFormulaInfo,TType,TEnv,TFuncDecl> extends Object implements BitvectorFormulaManager
-
-
Field Summary
Fields Modifier and Type Field Description protected FormulaCreator<TFormulaInfo,TType,TEnv,TFuncDecl>formulaCreator
-
Constructor Summary
Constructors Modifier Constructor Description protectedAbstractBitvectorFormulaManager(FormulaCreator<TFormulaInfo,TType,TEnv,TFuncDecl> pCreator, AbstractBooleanFormulaManager<TFormulaInfo,TType,TEnv,TFuncDecl> pBmgr)
-
Method Summary
All Methods Instance Methods Abstract Methods Concrete Methods Modifier and Type Method Description BitvectorFormulaadd(BitvectorFormula pNumber1, BitvectorFormula pNumber2)This method returns the addition of the given bitvectors.protected abstract TFormulaInfoadd(TFormulaInfo pParam1, TFormulaInfo pParam2)BitvectorFormulaand(BitvectorFormula pBits1, BitvectorFormula pBits2)This method returns the bit-wise AND of the given bitvectors.protected abstract TFormulaInfoand(TFormulaInfo pParam1, TFormulaInfo pParam2)BitvectorFormulaconcat(BitvectorFormula pNumber, BitvectorFormula pAppend)Concatenate two bitvectors.protected abstract TFormulaInfoconcat(TFormulaInfo number, TFormulaInfo pAppend)BooleanFormuladistinct(List<BitvectorFormula> pBits)All given bitvectors are pairwise unequal.protected TFormulaInfodistinctImpl(List<TFormulaInfo> pBits)BitvectorFormuladivide(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)This method returns the division for two bitvector formulas.protected abstract TFormulaInfodivide(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)BooleanFormulaequal(BitvectorFormula pNumber1, BitvectorFormula pNumber2)This method returns the bit-wise equality of the given bitvectors.protected abstract TFormulaInfoequal(TFormulaInfo pParam1, TFormulaInfo pParam2)BitvectorFormulaextend(BitvectorFormula pNumber, int pExtensionBits, boolean pSigned)Extend a bitvector to the left (add most significant bits).protected abstract TFormulaInfoextend(TFormulaInfo pNumber, int pExtensionBits, boolean pSigned)BitvectorFormulaextract(BitvectorFormula pNumber, int pMsb, int pLsb)Extract a range of bits from a bitvector.protected abstract TFormulaInfoextract(TFormulaInfo pNumber, int pMsb, int pLsb)protected TFormulaInfoextractInfo(Formula pBits)protected FormulaCreator<TFormulaInfo,TType,TEnv,TFuncDecl>getFormulaCreator()intgetLength(BitvectorFormula pNumber)This method returns the length of a bitvector, also denoted as bit-size.BooleanFormulagreaterOrEquals(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)Compare the given bitvectors.protected abstract TFormulaInfogreaterOrEquals(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)BooleanFormulagreaterThan(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)Compare the given bitvectors.protected abstract TFormulaInfogreaterThan(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)BooleanFormulalessOrEquals(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)Compare the given bitvectors.protected abstract TFormulaInfolessOrEquals(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)BooleanFormulalessThan(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)Compare the given bitvectors.protected abstract TFormulaInfolessThan(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)BitvectorFormulamakeBitvector(int pLength, long i)Convert a number into a bitvector with given size.BitvectorFormulamakeBitvector(int pLength, BigInteger i)Convert a number into a bitvector with given size.BitvectorFormulamakeBitvector(int length, NumeralFormula.IntegerFormula pI)Convert/Cast/Interpret a numeral formula into a bitvector with given size.protected TFormulaInfomakeBitvectorImpl(int pLength, long pI)protected abstract TFormulaInfomakeBitvectorImpl(int pLength, BigInteger pI)protected abstract TFormulaInfomakeBitvectorImpl(int length, TFormulaInfo pParam1)BitvectorFormulamakeVariable(int pLength, String pVar)Creates a variable with exactly the given name and bitwidth.BitvectorFormulamakeVariable(FormulaType.BitvectorType type, String pVar)protected abstract TFormulaInfomakeVariableImpl(int pLength, String pVar)BitvectorFormulamultiply(BitvectorFormula pNumber1, BitvectorFormula pNumber2)This method returns the multiplication of the given bitvectors.protected abstract TFormulaInfomultiply(TFormulaInfo pParam1, TFormulaInfo pParam2)BitvectorFormulanegate(BitvectorFormula pNumber)This method returns the negated number, i.e., it is multiplied by "-1".protected abstract TFormulaInfonegate(TFormulaInfo pParam1)BitvectorFormulanot(BitvectorFormula pBits)This method returns the bit-wise complement of the given bitvector.protected abstract TFormulaInfonot(TFormulaInfo pParam1)BitvectorFormulaor(BitvectorFormula pBits1, BitvectorFormula pBits2)This method returns the bit-wise OR of the given bitvectors.protected abstract TFormulaInfoor(TFormulaInfo pParam1, TFormulaInfo pParam2)BitvectorFormularemainder(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)This method returns the remainder (remainder(dividend, divisor) == remainder) for the Euclidean division (dividend = quotient * divisor + remainder) of two bitvector formulas.protected abstract TFormulaInforemainder(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)BitvectorFormularotateLeft(BitvectorFormula pNumber, int pToRotate)This method returns a term representing the left rotation (towards most-significant bit) of number by toRotate.BitvectorFormularotateLeft(BitvectorFormula pNumber, BitvectorFormula pToRotate)This method returns a term representing the left rotation (towards most-significant bit) of number by toRotate.protected TFormulaInforotateLeft(TFormulaInfo pNumber, TFormulaInfo pToRotate)protected TFormulaInforotateLeftByConstant(TFormulaInfo pNumber, int pToRotate)BitvectorFormularotateRight(BitvectorFormula pNumber, int pToRotate)This method returns a term representing the right rotation (towards least-significant bit) of number by toRotate.BitvectorFormularotateRight(BitvectorFormula pNumber, BitvectorFormula pToRotate)This method returns a term representing the right rotation (towards least-significant bit) of number by toRotate.protected TFormulaInforotateRight(TFormulaInfo pNumber, TFormulaInfo pToRotate)protected TFormulaInforotateRightByConstant(TFormulaInfo pNumber, int pToRotate)BitvectorFormulashiftLeft(BitvectorFormula pNumber, BitvectorFormula toShift)This method returns a term representing the left shift (towards most-significant bit) of number by toShift.protected abstract TFormulaInfoshiftLeft(TFormulaInfo pNumber, TFormulaInfo pToShift)BitvectorFormulashiftRight(BitvectorFormula pNumber, BitvectorFormula pToShift, boolean signed)Return a term representing the (arithmetic if signed is true) right shift of number by toShift.protected abstract TFormulaInfoshiftRight(TFormulaInfo pNumber, TFormulaInfo toShift, boolean signed)BitvectorFormulasmodulo(BitvectorFormula pNumber1, BitvectorFormula pNumber2)This method returns the two complement signed remainder (smodulo(dividend, divisor) == remainder) for the Euclidean division (dividend = quotient * divisor + remainder) of two bitvector formulas, with the sign of the remainder following the sign of the divisor.protected abstract TFormulaInfosmodulo(TFormulaInfo pParam1, TFormulaInfo pParam2)BitvectorFormulasubtract(BitvectorFormula pNumber1, BitvectorFormula pNumber2)This method returns the subtraction of the given bitvectors.protected abstract TFormulaInfosubtract(TFormulaInfo pParam1, TFormulaInfo pParam2)NumeralFormula.IntegerFormulatoIntegerFormula(BitvectorFormula pI, boolean signed)Convert/Cast/Interpret a signed/unsigned bitvector formula as an integer formula.protected abstract TFormulaInfotoIntegerFormulaImpl(TFormulaInfo pI, boolean signed)protected TTypetoSolverType(FormulaType<?> formulaType)protected BigIntegertransformValueToRange(int pLength, BigInteger pI)transform a negative value into its positive counterpart.BitvectorFormulaxor(BitvectorFormula pBits1, BitvectorFormula pBits2)This method returns the bit-wise XOR of the given bitvectors.protected abstract TFormulaInfoxor(TFormulaInfo pParam1, TFormulaInfo pParam2)-
Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Methods inherited from interface org.sosy_lab.java_smt.api.BitvectorFormulaManager
extract, modulo
-
-
-
-
Field Detail
-
formulaCreator
protected final FormulaCreator<TFormulaInfo,TType,TEnv,TFuncDecl> formulaCreator
-
-
Constructor Detail
-
AbstractBitvectorFormulaManager
protected AbstractBitvectorFormulaManager(FormulaCreator<TFormulaInfo,TType,TEnv,TFuncDecl> pCreator, AbstractBooleanFormulaManager<TFormulaInfo,TType,TEnv,TFuncDecl> pBmgr)
-
-
Method Detail
-
makeBitvector
public BitvectorFormula makeBitvector(int length, NumeralFormula.IntegerFormula pI)
Description copied from interface:BitvectorFormulaManagerConvert/Cast/Interpret a numeral formula into a bitvector with given size.If the numeral formula is too large for the given length, we cut off the largest bits and only use the least significant bits.
- Specified by:
makeBitvectorin interfaceBitvectorFormulaManager
-
makeBitvectorImpl
protected abstract TFormulaInfo makeBitvectorImpl(int length, TFormulaInfo pParam1)
-
toIntegerFormula
public NumeralFormula.IntegerFormula toIntegerFormula(BitvectorFormula pI, boolean signed)
Description copied from interface:BitvectorFormulaManagerConvert/Cast/Interpret a signed/unsigned bitvector formula as an integer formula.- Specified by:
toIntegerFormulain interfaceBitvectorFormulaManager
-
toIntegerFormulaImpl
protected abstract TFormulaInfo toIntegerFormulaImpl(TFormulaInfo pI, boolean signed)
-
negate
public BitvectorFormula negate(BitvectorFormula pNumber)
Description copied from interface:BitvectorFormulaManagerThis method returns the negated number, i.e., it is multiplied by "-1". The given number is interpreted as signed bitvector and corresponds to "2^BITSIZE - number". The result has the same length as the given number.- Specified by:
negatein interfaceBitvectorFormulaManager
-
negate
protected abstract TFormulaInfo negate(TFormulaInfo pParam1)
-
add
public BitvectorFormula add(BitvectorFormula pNumber1, BitvectorFormula pNumber2)
Description copied from interface:BitvectorFormulaManagerThis method returns the addition of the given bitvectors. The result has the same length as the given parameters. There can be an overflow, i.e., as one would expect from bitvector logic. There is no difference in signed and unsigned numbers.- Specified by:
addin interfaceBitvectorFormulaManager- Parameters:
pNumber1- a FormulapNumber2- a Formula- Returns:
number1 + number2
-
add
protected abstract TFormulaInfo add(TFormulaInfo pParam1, TFormulaInfo pParam2)
-
subtract
public BitvectorFormula subtract(BitvectorFormula pNumber1, BitvectorFormula pNumber2)
Description copied from interface:BitvectorFormulaManagerThis method returns the subtraction of the given bitvectors. The result has the same length as the given parameters. There can be an overflow, i.e., as one would expect from bitvector logic. There is no difference in signed and unsigned numbers.- Specified by:
subtractin interfaceBitvectorFormulaManager- Parameters:
pNumber1- a FormulapNumber2- a Formula- Returns:
number1 - number2
-
subtract
protected abstract TFormulaInfo subtract(TFormulaInfo pParam1, TFormulaInfo pParam2)
-
divide
public BitvectorFormula divide(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)
Description copied from interface:BitvectorFormulaManagerThis method returns the division for two bitvector formulas.For signed bitvectors, the result is rounded towards zero (also called "truncated integer division", similar to the division in the C99 standard), e.g., a user can assume the following equations:
- 10 / 5 = 2
- 10 / 3 = 3
- 10 / (-3) = -3
- -10 / 5 = -2
- -10 / 3 = -3
- -10 / (-3) = 3
If the divisor evaluates to zero (division-by-zero), either directly as value or indirectly via an additional constraint, then the result of the division is defined as:
- "-1" interpreted as bitvector (i.e., all bits set to "1"), if the dividend is non-negative, and
- "1" interpreted as bitvector (i.e., all bits set to "0", except the last bit), if the dividend is negative.
We refer to the SMTLIB standard version 2.6 for the division operator in BV theory for additional information.
- Specified by:
dividein interfaceBitvectorFormulaManager- Parameters:
pNumber1- dividend of the operation.pNumber2- divisor of the operation.signed- whether to interpret all operands as signed or as unsigned numbers.
-
divide
protected abstract TFormulaInfo divide(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)
-
remainder
public BitvectorFormula remainder(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)
Description copied from interface:BitvectorFormulaManagerThis method returns the remainder (remainder(dividend, divisor) == remainder) for the Euclidean division (dividend = quotient * divisor + remainder) of two bitvector formulas.For unsigned bitvectors, this returns the remainder of unsigned bitvector division.
For signed bitvectors, the sign of the result follows the sign of the dividend, i.e. the quotient of the division is rounded in such a way that the sign of the result of the remainder operation follows the sign of the dividend. A user can assume the following example equations, with bitvectors interpreted as signed decimal numbers, to hold:
- remainder(10, 5, true) == 0
- remainder(10, 3, true) == 1
- remainder(10, -3, true) == 1
- remainder(-10, 5, true) == 0
- remainder(-10, 3, true) == -1
- remainder(-10, -3, true) == -1
If the divisor evaluates to zero (modulo-by-zero), either directly as value or indirectly via an additional constraint, then the result of the modulo operation is defined as the dividend itself. We refer to the SMTLIB standard version 2.6 for the division and remainder operators in BV theory.
We refer to the SMTLIB standard version 2.6 for the remainder operator in BV theory for additional information.
- Specified by:
remainderin interfaceBitvectorFormulaManager- Parameters:
pNumber1- dividend of the operation. The sign bit is carried over from this bitvector for signed operations.pNumber2- divisor of the operation.signed- whether to interpret all operands as signed or as unsigned numbers.
-
remainder
protected abstract TFormulaInfo remainder(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)
-
smodulo
public BitvectorFormula smodulo(BitvectorFormula pNumber1, BitvectorFormula pNumber2)
Description copied from interface:BitvectorFormulaManagerThis method returns the two complement signed remainder (smodulo(dividend, divisor) == remainder) for the Euclidean division (dividend = quotient * divisor + remainder) of two bitvector formulas, with the sign of the remainder following the sign of the divisor.The sign of the result follows the sign of the divisor; i.e. the quotient calculated in the modulo operation is rounded in such a way that the result of the smodulo operation follows the sign of the divisor. A user can assume the following example equations, with bitvectors interpreted as signed decimal numbers, to hold:
- smodulo(10, 5) == 0
- smodulo(10, 3) == 1
- smodulo(10, -3) == -2
- smodulo(-10, 5) == 0
- smodulo(-10, 3) == 2
- smodulo(-10, -3) == -1
If the divisor evaluates to zero (modulo-by-zero), either directly as value or indirectly via an additional constraint, then the result of the modulo operation is defined as the dividend itself. We refer to the SMTLIB standard version 2.6 for the division and remainder operators in BV theory.
For unsigned modulo, we refer to the unsigned remainder method
BitvectorFormulaManager.remainder(BitvectorFormula, BitvectorFormula, boolean).We refer to the SMTLIB standard version 2.6 for the smodulo operator in BV theory for additional information.
- Specified by:
smoduloin interfaceBitvectorFormulaManager- Parameters:
pNumber1- dividend of the operation.pNumber2- divisor of the operation.
-
smodulo
protected abstract TFormulaInfo smodulo(TFormulaInfo pParam1, TFormulaInfo pParam2)
-
multiply
public BitvectorFormula multiply(BitvectorFormula pNumber1, BitvectorFormula pNumber2)
Description copied from interface:BitvectorFormulaManagerThis method returns the multiplication of the given bitvectors. The result has the same length as the given parameters. There can be an overflow, i.e., as one would expect from bitvector logic. There is no difference in signed and unsigned numbers.- Specified by:
multiplyin interfaceBitvectorFormulaManager- Parameters:
pNumber1- a FormulapNumber2- a Formula- Returns:
number1 - number2
-
multiply
protected abstract TFormulaInfo multiply(TFormulaInfo pParam1, TFormulaInfo pParam2)
-
equal
public BooleanFormula equal(BitvectorFormula pNumber1, BitvectorFormula pNumber2)
Description copied from interface:BitvectorFormulaManagerThis method returns the bit-wise equality of the given bitvectors.- Specified by:
equalin interfaceBitvectorFormulaManager- Parameters:
pNumber1- a FormulapNumber2- a Formula- Returns:
number1 == number2
-
equal
protected abstract TFormulaInfo equal(TFormulaInfo pParam1, TFormulaInfo pParam2)
-
greaterThan
public BooleanFormula greaterThan(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)
Description copied from interface:BitvectorFormulaManagerCompare the given bitvectors.- Specified by:
greaterThanin interfaceBitvectorFormulaManager- Parameters:
pNumber1- a FormulapNumber2- a Formulasigned- interpret the bitvectors as signed numbers instead of unsigned numbers- Returns:
number1 > number2
-
greaterThan
protected abstract TFormulaInfo greaterThan(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)
-
greaterOrEquals
public BooleanFormula greaterOrEquals(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)
Description copied from interface:BitvectorFormulaManagerCompare the given bitvectors.- Specified by:
greaterOrEqualsin interfaceBitvectorFormulaManager- Parameters:
pNumber1- a FormulapNumber2- a Formulasigned- interpret the bitvectors as signed numbers instead of unsigned numbers- Returns:
number1 >= number2
-
greaterOrEquals
protected abstract TFormulaInfo greaterOrEquals(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)
-
lessThan
public BooleanFormula lessThan(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)
Description copied from interface:BitvectorFormulaManagerCompare the given bitvectors.- Specified by:
lessThanin interfaceBitvectorFormulaManager- Parameters:
pNumber1- a FormulapNumber2- a Formulasigned- interpret the bitvectors as signed numbers instead of unsigned numbers- Returns:
number1 < number2
-
lessThan
protected abstract TFormulaInfo lessThan(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)
-
lessOrEquals
public BooleanFormula lessOrEquals(BitvectorFormula pNumber1, BitvectorFormula pNumber2, boolean signed)
Description copied from interface:BitvectorFormulaManagerCompare the given bitvectors.- Specified by:
lessOrEqualsin interfaceBitvectorFormulaManager- Parameters:
pNumber1- a FormulapNumber2- a Formulasigned- interpret the bitvectors as signed numbers instead of unsigned numbers- Returns:
number1 <= number2
-
lessOrEquals
protected abstract TFormulaInfo lessOrEquals(TFormulaInfo pParam1, TFormulaInfo pParam2, boolean signed)
-
not
public BitvectorFormula not(BitvectorFormula pBits)
Description copied from interface:BitvectorFormulaManagerThis method returns the bit-wise complement of the given bitvector.- Specified by:
notin interfaceBitvectorFormulaManager- Parameters:
pBits- Formula- Returns:
~bits
-
not
protected abstract TFormulaInfo not(TFormulaInfo pParam1)
-
and
public BitvectorFormula and(BitvectorFormula pBits1, BitvectorFormula pBits2)
Description copied from interface:BitvectorFormulaManagerThis method returns the bit-wise AND of the given bitvectors.- Specified by:
andin interfaceBitvectorFormulaManager- Parameters:
pBits1- a FormulapBits2- a Formula- Returns:
bits1 & bits2
-
and
protected abstract TFormulaInfo and(TFormulaInfo pParam1, TFormulaInfo pParam2)
-
or
public BitvectorFormula or(BitvectorFormula pBits1, BitvectorFormula pBits2)
Description copied from interface:BitvectorFormulaManagerThis method returns the bit-wise OR of the given bitvectors.- Specified by:
orin interfaceBitvectorFormulaManager- Parameters:
pBits1- a FormulapBits2- a Formula- Returns:
bits1 | bits2
-
or
protected abstract TFormulaInfo or(TFormulaInfo pParam1, TFormulaInfo pParam2)
-
xor
public BitvectorFormula xor(BitvectorFormula pBits1, BitvectorFormula pBits2)
Description copied from interface:BitvectorFormulaManagerThis method returns the bit-wise XOR of the given bitvectors.- Specified by:
xorin interfaceBitvectorFormulaManager- Parameters:
pBits1- a FormulapBits2- a Formula- Returns:
bits1 ^ bits2
-
xor
protected abstract TFormulaInfo xor(TFormulaInfo pParam1, TFormulaInfo pParam2)
-
makeBitvector
public BitvectorFormula makeBitvector(int pLength, long i)
Description copied from interface:BitvectorFormulaManagerConvert a number into a bitvector with given size.- Specified by:
makeBitvectorin interfaceBitvectorFormulaManager
-
makeBitvectorImpl
protected TFormulaInfo makeBitvectorImpl(int pLength, long pI)
-
makeBitvector
public BitvectorFormula makeBitvector(int pLength, BigInteger i)
Description copied from interface:BitvectorFormulaManagerConvert a number into a bitvector with given size.- Specified by:
makeBitvectorin interfaceBitvectorFormulaManager
-
makeBitvectorImpl
protected abstract TFormulaInfo makeBitvectorImpl(int pLength, BigInteger pI)
-
transformValueToRange
protected final BigInteger transformValueToRange(int pLength, BigInteger pI)
transform a negative value into its positive counterpart.- Throws:
IllegalArgumentException- if the value is out of range for the given size.
-
makeVariable
public BitvectorFormula makeVariable(FormulaType.BitvectorType type, String pVar)
- Specified by:
makeVariablein interfaceBitvectorFormulaManager- See Also:
BitvectorFormulaManager.makeVariable(int, String)
-
makeVariable
public BitvectorFormula makeVariable(int pLength, String pVar)
Description copied from interface:BitvectorFormulaManagerCreates a variable with exactly the given name and bitwidth.Please make sure that the given name is valid in SMT-LIB2. Take a look at
FormulaManager.isValidName(java.lang.String)for further information.This method does not quote or unquote the given name, but uses the plain name "AS IS".
Formula.toString()can return a different String than the given one.- Specified by:
makeVariablein interfaceBitvectorFormulaManager
-
makeVariableImpl
protected abstract TFormulaInfo makeVariableImpl(int pLength, String pVar)
-
shiftRight
public BitvectorFormula shiftRight(BitvectorFormula pNumber, BitvectorFormula pToShift, boolean signed)
Return a term representing the (arithmetic if signed is true) right shift of number by toShift.- Specified by:
shiftRightin interfaceBitvectorFormulaManager
-
shiftRight
protected abstract TFormulaInfo shiftRight(TFormulaInfo pNumber, TFormulaInfo toShift, boolean signed)
-
shiftLeft
public BitvectorFormula shiftLeft(BitvectorFormula pNumber, BitvectorFormula toShift)
Description copied from interface:BitvectorFormulaManagerThis method returns a term representing the left shift (towards most-significant bit) of number by toShift. The result has the same length as the given number. On the right side, we fill up the least significant bits with zeroes. For "toShift >= bitsize", we return a bitvector with value zero.- Specified by:
shiftLeftin interfaceBitvectorFormulaManager
-
shiftLeft
protected abstract TFormulaInfo shiftLeft(TFormulaInfo pNumber, TFormulaInfo pToShift)
-
rotateLeft
public BitvectorFormula rotateLeft(BitvectorFormula pNumber, int pToRotate)
Description copied from interface:BitvectorFormulaManagerThis method returns a term representing the left rotation (towards most-significant bit) of number by toRotate. The result has the same length as the given number. For "toRotate % bitsize == 0", we return the number itself.- Specified by:
rotateLeftin interfaceBitvectorFormulaManagerpToRotate- the number of bits to be moved
-
rotateLeftByConstant
protected TFormulaInfo rotateLeftByConstant(TFormulaInfo pNumber, int pToRotate)
-
rotateLeft
public BitvectorFormula rotateLeft(BitvectorFormula pNumber, BitvectorFormula pToRotate)
Description copied from interface:BitvectorFormulaManagerThis method returns a term representing the left rotation (towards most-significant bit) of number by toRotate. The result has the same length as the given number. For "toRotate % bitsize == 0", we return the number itself.- Specified by:
rotateLeftin interfaceBitvectorFormulaManagerpToRotate- unsigned bitvector, represents the number of bits to be moved
-
rotateLeft
protected TFormulaInfo rotateLeft(TFormulaInfo pNumber, TFormulaInfo pToRotate)
-
rotateRight
public BitvectorFormula rotateRight(BitvectorFormula pNumber, int pToRotate)
Description copied from interface:BitvectorFormulaManagerThis method returns a term representing the right rotation (towards least-significant bit) of number by toRotate. The result has the same length as the given number. For "toRotate % bitsize == 0", we return the number itself.- Specified by:
rotateRightin interfaceBitvectorFormulaManagerpToRotate- the number of bits to be moved
-
rotateRightByConstant
protected TFormulaInfo rotateRightByConstant(TFormulaInfo pNumber, int pToRotate)
-
rotateRight
public BitvectorFormula rotateRight(BitvectorFormula pNumber, BitvectorFormula pToRotate)
Description copied from interface:BitvectorFormulaManagerThis method returns a term representing the right rotation (towards least-significant bit) of number by toRotate. The result has the same length as the given number. For "toRotate % bitsize == 0", we return the number itself.- Specified by:
rotateRightin interfaceBitvectorFormulaManagerpToRotate- unsigned bitvector, represents the number of bits to be moved
-
rotateRight
protected TFormulaInfo rotateRight(TFormulaInfo pNumber, TFormulaInfo pToRotate)
-
concat
public final BitvectorFormula concat(BitvectorFormula pNumber, BitvectorFormula pAppend)
Description copied from interface:BitvectorFormulaManagerConcatenate two bitvectors.- Specified by:
concatin interfaceBitvectorFormulaManager
-
concat
protected abstract TFormulaInfo concat(TFormulaInfo number, TFormulaInfo pAppend)
-
extract
public final BitvectorFormula extract(BitvectorFormula pNumber, int pMsb, int pLsb)
Description copied from interface:BitvectorFormulaManagerExtract a range of bits from a bitvector. We require0 <= lsb <= msb < bitsize.If msb equals lsb, then a single bit will be returned, i.e., the bit from the given position. If lsb equals 0 and msb equals bitsize-1, then the complete bitvector will be returned.
- Specified by:
extractin interfaceBitvectorFormulaManager- Parameters:
pNumber- from where the bits are extracted.pMsb- Upper index for the most significant bit. Must be in interval from lsb to bitsize-1.pLsb- Lower index for the least significant bit. Must be in interval from 0 to msb.
-
extract
protected abstract TFormulaInfo extract(TFormulaInfo pNumber, int pMsb, int pLsb)
-
extend
public final BitvectorFormula extend(BitvectorFormula pNumber, int pExtensionBits, boolean pSigned)
Description copied from interface:BitvectorFormulaManagerExtend a bitvector to the left (add most significant bits). If signed is set and the given number is negative, then the bit "1" will be added several times, else "0".- Specified by:
extendin interfaceBitvectorFormulaManager- Parameters:
pNumber- The bitvector to extend.pExtensionBits- How many bits to add.pSigned- Whether the extension should depend on the sign bit.
-
extend
protected abstract TFormulaInfo extend(TFormulaInfo pNumber, int pExtensionBits, boolean pSigned)
-
getLength
public int getLength(BitvectorFormula pNumber)
Description copied from interface:BitvectorFormulaManagerThis method returns the length of a bitvector, also denoted as bit-size.- Specified by:
getLengthin interfaceBitvectorFormulaManager
-
distinct
public final BooleanFormula distinct(List<BitvectorFormula> pBits)
Description copied from interface:BitvectorFormulaManagerAll given bitvectors are pairwise unequal.- Specified by:
distinctin interfaceBitvectorFormulaManager
-
distinctImpl
protected TFormulaInfo distinctImpl(List<TFormulaInfo> pBits)
-
getFormulaCreator
protected final FormulaCreator<TFormulaInfo,TType,TEnv,TFuncDecl> getFormulaCreator()
-
extractInfo
protected final TFormulaInfo extractInfo(Formula pBits)
-
toSolverType
protected final TType toSolverType(FormulaType<?> formulaType)
-
-